A domain decomposition method using efficient interface-acting preconditioners
نویسنده
چکیده
The conjugate gradient boundary iteration (CGBI) is a domain decomposition method for symmetric elliptic problems on domains with large aspect ratio. High efficiency is reached by the construction of preconditioners that are acting only on the subdomain interfaces. The theoretical derivation of the method and some numerical results revealing a convergence rate of 0.04–0.1 per iteration step are given in this article. For the solution of the local subdomain problems, both finite element (FE) and spectral Chebyshev methods are considered.
منابع مشابه
Numerical assessment of two-level domain decomposition preconditioners for incompressible Stokes and elasticity equations
Solving the linear elasticity and Stokes equations by an optimal domain decomposition method derived algebraically involves the use of non standard interface conditions. The onelevel domain decomposition preconditioners are based on the solution of local problems. This has the undesired consequence that the results are not scalable, it means that the number of iterations needed to reach converg...
متن کاملMultilevel Filtering Preconditioners: Extensions to More General Elliptic Problems
The concept of multilevel filtering (MF) preconditioning applied to second-order selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equations on locally refined grids and interface operators arising from domain decomposition methods. Numerical resu...
متن کاملBlock Diagonal Preconditioners for the Schur Complement Method Block Diagonal Preconditioners for the Schur Complement Method
We present numerical methods for solving systems of linear equations originated from the discretisation of two-dimensional elliptic partial diierential equations. We are interested in diierential equations that describe heterogeneous and anisotropic phenomena. We use a nonoverlapping domain decomposition method for solving the linear systems. We describe new local preconditioners for the interf...
متن کاملNeumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems
We present a class of domain decomposition (DD) preconditioners for the solution of elliptic linear-quadratic optimal control problems. Our DD preconditioners are extensions of Neumann–Neumann DD preconditioners, which have been successfully applied to the solution of single PDEs. The DD preconditioners are based on a decomposition of the optimality conditions for the elliptic linear-quadratic ...
متن کاملSchur Complement Preconditioners for Anisotropic Problems
We present two new variants of Schur complement domain decomposition preconditioners suitable for 2D anisotropic problems. These variants are based on adaptations of the probing idea 5] used in conjunction with a coarse grid approximation 3]. The new methods are speciically designed for situations when the coupling between neighboring interfaces is stronger than the coupling within an interface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 74 شماره
صفحات -
تاریخ انتشار 2005